How does a noncompetitive inhibitor affect an enzyme?

Enzyme inhibitors

Various compounds can reduce the activity of enzymes. They may act in a variety of different ways, and indeed may be reversible or irreversible inhibitors of the enzyme.

On this page there are notes about:

  • Competitive inhibition
  • Non-competitive inhibition
  • Uncompetitive inhibition
  • The choice of a competitive or non-competitive inhibitor as a drug
  • Ki, the inhibitor constant

An irreversible inhibitor causes covalent modification of the enzyme, so that its activity is permanently reduced. Compounds that act as irreversible inhibitors are often useful as drugs that need be taken only every few days, although adjusting the dose to suit the patient’s response is a lengthy process with such compounds. By contrast, the effect of a reversible inhibitor can be reversed by removing the inhibitor, e.g. by dialysis or gel filtration.

The normal sequence of an enzyme reaction can be represented as:

How does a noncompetitive inhibitor affect an enzyme?

where:
E = enzyme
S = substrate
E-S = enzyme-substrate complex
E-P = enzyme-product complex
P = product

There are three main types of reversible inhibitor:

  • competitive inhibitor
  • non-competitive inhibitor
  • uncompetitive inhibitor

They interact with the enzyme or enzyme-substrate complex at different stages in the sequence

Competitive inhibition

A competitive inhibitor competes with the substrate for the active site of the enzyme:

How does a noncompetitive inhibitor affect an enzyme?

This means that increasing the concentration of substrate will decrease the chance of inhibitor binding to the enzyme. Hence, if the substrate concentration is high enough the enzyme will reach the same Vmax as without the inhibitor. However, it will require a higher concentration of substrate to achieve this and so the Km of the enzyme will also be higher. Reacting the enzyme with a range of concentrations of substrate at different concentrations of a competitive inhibitor will give a family of curves as shown below:

How does a noncompetitive inhibitor affect an enzyme?

The Lineweaver-Burk double reciprocal plot for this set of data shows a series of lines crossing the y (1/v) axis at the same point - i.e. Vmax is unchanged, but with a decreasing value of 1/Km (and hence a higher Km) in the presence of the inhibitor:

How does a noncompetitive inhibitor affect an enzyme?

top of page

Non-competitive inhibition

A non-competitive inhibitor reacts with the enzyme-substrate complex, and slows the rate of reaction to form the enzyme-product complex.

How does a noncompetitive inhibitor affect an enzyme?

This means that increasing the concentration of substrate will not relieve the inhibition, since the inhibitor reacts with the enzyme-substrate complex. Reacting the enzyme with a range of concentrations of substrate at different concentrations of a non-competitive inhibitor will give a family of curves as shown below:

How does a noncompetitive inhibitor affect an enzyme?

The Lineweaver-Burk double reciprocal plot for this set of data shows a series of lines converging on the same point on the X (1/S) axis - i,.e. Km is unchanged, but Vmax is reduced:

How does a noncompetitive inhibitor affect an enzyme?

top of page

Uncompetitive inhibition

This is a very rare class of inhibition. An uncompetitive inhibitor binds to the enzyme and enhances the binding of substrate (so reducing Km), but the resultant enzyme-inhibitor-substrate complex only undergoes reaction to form the product slowly, so that Vmax is also reduced:

How does a noncompetitive inhibitor affect an enzyme?

Reacting the enzyme with a range of concentrations of substrate at different concentrations of an uncompetitive inhibitor will give a family of curves as shown below:

How does a noncompetitive inhibitor affect an enzyme?

The Lineweaver-Burk double reciprocal plot for this set of data shows a series of parallel lines - both Km and Vmax are reduced:

How does a noncompetitive inhibitor affect an enzyme?

top of page

The choice of a competitive or non-competitive inhibitor as a drug

If the requirement is to increase the intracellular concentration of the substrate, then either a competitive or non-competitive inhibitor will serve, since both will inhibit the utilisation of substrate, so that it accumulates.

However, if the requirement is to decrease the intracellular concentration of the product, then the inhibitor must be non-competitive. As unused substrate accumulates, so it will compete with a competitive inhibitor, and the final result will be a more or less normal rate of formation of product, but with a larger pool of substrate. Increasing the concentration of substrate does not affect a non-competitive inhibitor.

Ki, the inhibitor constant

The inhibitor constant, Ki, is an indication of how potent an inhibitor is; it is the concentration required to produce half maximum inhibition.

Plotting 1/v against concentration of inhibitor at each concentration of substrate (the Dixon plot) gives a family of intersecting lines.

For a competitive inhibitor, the lines converge above the x axis, and the value of [I] where they intersect is -Ki

How does a noncompetitive inhibitor affect an enzyme?

For a non-competitive inhibitor, the lines converge on x axis, and the value of [I] where they intersect is -Ki

How does a noncompetitive inhibitor affect an enzyme?

top of page

How does a noncompetitive inhibitor affect the rate of reaction?

The noncompetitive inhibitor slows down the reaction rate, i.e. the rate of the product formation is less with inhibitor present than with inhibitor absent. This means that the active site is modified, but not disabled, by the presence of the inhibitor.

Does a noncompetitive inhibitor lower the enzyme concentration?

The resulting decrease in enzyme activity is independent of substrate concentration as the inhibitor does not compete with the substrate for active site binding. Noncompetitive inhibition reduces the maximal rate of an enzyme's catalyzed reaction while leaving the affinity of the enzyme for its substrate unchanged.