Which of these is a clinical manifestation of early chronic obstructive pulmonary disease (copd)?

Recommended textbook solutions

Which of these is a clinical manifestation of early chronic obstructive pulmonary disease (copd)?

Clinical Reasoning Cases in Nursing

7th EditionJulie S Snyder, Mariann M Harding

2,512 solutions

Which of these is a clinical manifestation of early chronic obstructive pulmonary disease (copd)?

The Human Body in Health and Disease

7th EditionGary A. Thibodeau, Kevin T. Patton

1,505 solutions

Which of these is a clinical manifestation of early chronic obstructive pulmonary disease (copd)?

Medical Terminology Systems

8th EditionBarbara A. Gylys

1,379 solutions

Which of these is a clinical manifestation of early chronic obstructive pulmonary disease (copd)?

Medical Language for Modern Health Care

4th EditionDavid M Allan, Rachel Basco

2,732 solutions

The most important symptoms of COPD are breathlessness on exertion and chronic cough with or without phlegm. The dyspnoea usually worsens over time but is often not present in mild or moderate COPD. The cough may be dry or productive. Cough and phlegm often precede dyspnoea on exertion by many years. Other symptoms include wheezing and chest tightness. As the disease progresses and reaches the severe stages, fatigue, weight loss and anorexia may increase. To establish the diagnosis of COPD, lung function measurement by spirometry is necessary.

A characteristic of COPD is exacerbations or episodes of acute worsening of the respiratory symptoms. The most common causes of exacerbations are viral or bacterial infections. Increased air pollution also appears to precipitate exacerbations of COPD. Some patients are particularly prone to exacerbations while others are not. Two or more exacerbations during the previous year is the most important indicator of a future exacerbation.

Exacerbations accelerate the decline in lung function that characterises COPD, resulting in reduced physical activity, poorer quality of life, and an increased risk of death; they are also responsible for a large proportion of the healthcare costs attributable to COPD.

Patients with COPD often suffer from other diseases (comorbidities). The comorbidities may share common risk factors with COPD, in particular cigarette smoking. They may also represent extrapulmonary manifestations or complications of COPD, such as muscle dysfunction due to inactivity. Comorbidities may be secondary to treatment of COPD; for example, osteoporosis due to oral corticosteroid treatment. The most common comorbidities in COPD are ischaemic heart disease, anxiety and depression, osteoporosis, skeletal muscle dysfunction, gastro-oesophageal reflux, anaemia, lung cancer, diabetes and metabolic syndrome. Comorbidities contribute to the overall severity and manifestations of the disease. They can occur in mild, moderate or severe COPD and they increase the risks of hospitalisation and mortality of COPD independently.

The clinical effects of COPD show considerable inter-individual variation, depending on which respiratory symptoms predominate, the frequency of exacerbations, the level and rate of lung function decline and the amount of emphysema, as well as comorbidities. Various subtypes of the disease are often termed phenotypes of COPD.

See the entire Obstructive pulmonary disease Chapter

1. Vos T., Flaxman A.D., Naghavi M., Lozano R., Michaud C., Ezzati M., Shibuya K., Salomon J.A., Abdalla S., Aboyans V., et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2163–2196. doi: 10.1016/S0140-6736(12)61729-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Anzueto A., Sethi S., Martinez F.J. Exacerbations of chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 2007;4:554–564. doi: 10.1513/pats.200701-003FM. [PubMed] [CrossRef] [Google Scholar]

4. Li L.S.K., Williams M.T., Johnston K.N., Frith P., Hypponen E., Paquet C. Parental and life-course influences on symptomatic airflow obstruction. ERJ Open Res. 2020;6 doi: 10.1183/23120541.00343-2019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Guerra S., Martinez F.D. The complex beginnings of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2020;201:641–642. doi: 10.1164/rccm.201912-2363ED. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Petersen H., Sood A., Polverino F., Owen C.A., Pinto-Plata V., Celli B.R., Tesfaigzi Y. The course of lung function in middle-aged heavy smokers: Incidence and time to early onset of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2018;198:1449–1451. doi: 10.1164/rccm.201805-0861LE. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Wijnant S.R.A., De Roos E., Kavousi M., Stricker B.H., Terzikhan N., Lahousse L., Brusselle G.G. Trajectory and mortality of preserved ratio impaired spirometry: The Rotterdam Study. Eur. Respir. J. 2020;55 doi: 10.1183/13993003.01217-2019. [PubMed] [CrossRef] [Google Scholar]

8. Grant T., Brigham E.P., McCormack M.C. Childhood origins of adult lung disease as opportunities for prevention. J. Allergy Clin. Immunol. Pract. 2020;8:849–858. doi: 10.1016/j.jaip.2020.01.015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Çolak Y., Nordestgaard B.G., Vestbo J., Lange P., Afzal S. Prognostic significance of chronic respiratory symptoms in individuals with normal spirometry. Eur. Respir. J. 2019;54:1900734. doi: 10.1183/13993003.00734-2019. [PubMed] [CrossRef] [Google Scholar]

10. Woodruff P.G., Barr R.G., Bleecker E., Christenson S.A., Couper D., Curtis J.L., Gouskova N.A., Hansel N.N., Hoffman E.A., Kanner R.E., et al. Clinical significance of symptoms in smokers with preserved pulmonary function. N. Engl. J. Med. 2016;374:1811–1821. doi: 10.1056/NEJMoa1505971. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Naya I.P., Tombs L., Lipson D.A., Compton C. Preventing clinically important deterioration of COPD with addition of umeclidinium to inhaled corticosteroid/long-acting beta2-agonist therapy: An integrated post hoc analysis. Adv. Ther. 2018;35:1626–1638. doi: 10.1007/s12325-018-0771-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Colak Y., Afzal S., Nordestgaard B.G., Vestbo J., Lange P. Prognosis of asymptomatic and symptomatic, undiagnosed COPD in the general population in Denmark: A prospective cohort study. Lancet Respir. Med. 2017;5:426–434. doi: 10.1016/S2213-2600(17)30119-4. [PubMed] [CrossRef] [Google Scholar]

13. Van Remoortel H., Hornikx M., Langer D., Burtin C., Everaerts S., Verhamme P., Boonen S., Gosselink R., Decramer M., Troosters T., et al. Risk factors and comorbidities in the preclinical stages of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2014;189:30–38. [PubMed] [Google Scholar]

14. Bui D.S., Lodge C.J., Burgess J.A., Lowe A.J., Perret J., Bui M.Q., Bowatte G., Gurrin L., Johns D.P., Thompson B.R., et al. Childhood predictors of lung function trajectories and future COPD risk: A prospective cohort study from the first to the sixth decade of life. Lancet Respir. Med. 2018;6:535–544. doi: 10.1016/S2213-2600(18)30100-0. [PubMed] [CrossRef] [Google Scholar]

15. Martinez F.J., Han M.K., Allinson J.P., Barr R.G., Boucher R.C., Calverley P.M.A., Celli B.R., Christenson S.A., Crystal R.G., Fageras M., et al. At the root: Defining and halting progression of early chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2018;197:1540–1551. doi: 10.1164/rccm.201710-2028PP. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Rennard S.I., Drummond M.B. Early chronic obstructive pulmonary disease: Definition, assessment, and prevention. Lancet. 2015;385:1778–1788. doi: 10.1016/S0140-6736(15)60647-X. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Washko G.R., Colangelo L.A., Estepar R.S.J., Ash S.Y., Bhatt S.P., Okajima Y., Liu K., Jacobs D.R., Jr., Iribarren C., Thyagarajan B., et al. Adult life-course trajectories of lung function and the development of emphysema: The CARDIA lung study. Am. J. Med. 2020;133:222–230. doi: 10.1016/j.amjmed.2019.06.049. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Allinson J.P., Hardy R., Donaldson G.C., Shaheen S.O., Kuh D., Wedzicha J.A. Combined impact of smoking and early-life exposures on adult lung function trajectories. Am. J. Respir. Crit. Care Med. 2017;196:1021–1030. doi: 10.1164/rccm.201703-0506OC. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Lange P., Celli B., Agusti A., Boje Jensen G., Divo M., Faner R., Guerra S., Marott J.L., Martinez F.D., Martinez-Camblor P., et al. Lung-function trajectories leading to chronic obstructive pulmonary disease. N. Engl. J. Med. 2015;373:111–122. doi: 10.1056/NEJMoa1411532. [PubMed] [CrossRef] [Google Scholar]

20. Sansores R.H., Ramirez-Venegas A. COPD in women: Susceptibility or vulnerability? Eur. Respir. J. 2016;47:19–22. doi: 10.1183/13993003.01781-2015. [PubMed] [CrossRef] [Google Scholar]

21. Mustonen T.K., Spencer S.M., Hoskinson R.A., Sachs D.P., Garvey A.J. The influence of gender, race, and menthol content on tobacco exposure measures. Nicotine Tob. Res. 2005;7:581–590. doi: 10.1080/14622200500185199. [PubMed] [CrossRef] [Google Scholar]

22. Anderson D.O., Ferris B.G., Jr. Role of tobacco smoking in the causation of chronic respiratory disease. N. Engl. J. Med. 1962;267:787–794. doi: 10.1056/NEJM196210182671601. [PubMed] [CrossRef] [Google Scholar]

23. Fletcher C., Peto R. The natural history of chronic airflow obstruction. Br. Med. J. 1977;1:1645–1648. doi: 10.1136/bmj.1.6077.1645. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Gold D.R., Wang X., Wypij D., Speizer F.E., Ware J.H., Dockery D.W. Effects of cigarette smoking on lung function in adolescent boys and girls. N. Engl. J. Med. 1996;335:931–937. doi: 10.1056/NEJM199609263351304. [PubMed] [CrossRef] [Google Scholar]

25. Pillai S.G., Kong X., Edwards L.D., Cho M.H., Anderson W.H., Coxson H.O., Lomas D.A., Silverman E.K. Loci identified by genome-wide association studies influence different disease-related phenotypes in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2010;182:1498–1505. doi: 10.1164/rccm.201002-0151OC. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Svanes C., Sunyer J., Plana E., Dharmage S., Heinrich J., Jarvis D., de Marco R., Norback D., Raherison C., Villani S., et al. Early life origins of chronic obstructive pulmonary disease. Thorax. 2010;65:14–20. doi: 10.1136/thx.2008.112136. [PubMed] [CrossRef] [Google Scholar]

27. Andresen E., Gunther G., Bullwinkel J., Lange C., Heine H. Increased expression of beta-defensin 1 (DEFB1) in chronic obstructive pulmonary disease. PLoS ONE. 2011;6:e21898. doi: 10.1371/journal.pone.0021898. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Yuan C., De Chang G.L., Deng X. Genetic polymorphism and chronic obstructive pulmonary disease. Int. J. Chronic Obstruct. Pulm. Dis. 2017;12:1385–1393. doi: 10.2147/COPD.S134161. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Shannon J.M., Wikenheiser-Brokamp K.A., Greenberf J.M. Lung Growth and Development. In: Broaddus V.C., Mason R.J., editors. Textbook of Respiratory Medicine 6. Elsevier; Philadelphia, PA, USA: 2016. pp. 22–31. [Google Scholar]

30. Beyer D., Mitfessel H., Gillissen A. Maternal smoking promotes chronic obstructive lung disease in the offspring as adults. Eur. J. Med. Res. 2009;14:27–31. doi: 10.1186/2047-783X-14-S4-27. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. McEvoy C.T., Spindel E.R. Pulmonary effects of maternal smoking on the fetus and child: Effects on lung development, respiratory morbidities, and life long lung health. Paediatr. Respir. Rev. 2017;21:27–33. doi: 10.1016/j.prrv.2016.08.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Balte P., Karmaus W., Roberts G., Kurukulaaratchy R., Mitchell F., Arshad H. Relationship between birth weight, maternal smoking during pregnancy and childhood and adolescent lung function: A path analysis. Respir. Med. 2016;121:13–20. doi: 10.1016/j.rmed.2016.10.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Barker D.J., Godfrey K.M., Fall C., Osmond C., Winter P.D., Shaheen S.O. Relation of birth weight and childhood respiratory infection to adult lung function and death from chronic obstructive airways disease. BMJ. 1991;303:671–675. doi: 10.1136/bmj.303.6804.671. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Simpson S.J., Turkovic L., Wilson A.C., Verheggen M., Logie K.M., Pillow J.J., Hall G.L. Lung function trajectories throughout childhood in survivors of very preterm birth: A longitudinal cohort study. Lancet Child Adolesc. Health. 2018;2:350–359. doi: 10.1016/S2352-4642(18)30064-6. [PubMed] [CrossRef] [Google Scholar]

35. Kwinta P., Pietrzyk J.J. Preterm birth and respiratory disease in later life. Expert Rev. Respir. Med. 2010;4:593–604. doi: 10.1586/ers.10.59. [PubMed] [CrossRef] [Google Scholar]

36. Svanes C., Omenaas E., Jarvis D., Chinn S., Gulsvik A., Burney P. Parental smoking in childhood and adult obstructive lung disease: Results from the European Community Respiratory Health Survey. Thorax. 2004;59:295–302. doi: 10.1136/thx.2003.009746. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Lange P., Parner J., Vestbo J., Schnohr P., Jensen G. A 15-year follow-up study of ventilatory function in adults with asthma. N. Engl. J. Med. 1998;339:1194–1200. doi: 10.1056/NEJM199810223391703. [PubMed] [CrossRef] [Google Scholar]

38. McGeachie M.J., Yates K.P., Zhou X., Guo F., Sternberg A.L., Van Natta M.L., Wise R.A., Szefler S.J., Sharma S., Kho A.T., et al. Patterns of growth and decline in lung function in persistent childhood asthma. N. Engl. J. Med. 2016;374:1842–1852. doi: 10.1056/NEJMoa1513737. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Tagiyeva N., Devereux G., Fielding S., Turner S., Douglas G. Outcomes of childhood asthma and wheezy bronchitis. A 50-year cohort study. Am. J. Respir. Crit. Care Med. 2016;193:23–30. doi: 10.1164/rccm.201505-0870OC. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Chan J.Y., Stern D.A., Guerra S., Wright A.L., Morgan W.J., Martinez F.D. Pneumonia in childhood and impaired lung function in adults: A longitudinal study. Pediatrics. 2015;135:607–616. doi: 10.1542/peds.2014-3060. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. De Marco R., Accordini S., Cerveri I., Corsico A., Anto J.M., Kunzli N., Janson C., Sunyer J., Jarvis D., Chinn S., et al. Incidence of chronic obstructive pulmonary disease in a cohort of young adults according to the presence of chronic cough and phlegm. Am. J. Respir. Crit. Care Med. 2007;175:32–39. doi: 10.1164/rccm.200603-381OC. [PubMed] [CrossRef] [Google Scholar]

42. Guerra S., Sherrill D.L., Venker C., Ceccato C.M., Halonen M., Martinez F.D. Chronic bronchitis before age 50 years predicts incident airflow limitation and mortality risk. Thorax. 2009;64:894–900. doi: 10.1136/thx.2008.110619. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Stern D.A., Morgan W.J., Wright A.L., Guerra S., Martinez F.D. Poor airway function in early infancy and lung function by age 22 years: A non-selective longitudinal cohort study. Lancet. 2007;370:758–764. doi: 10.1016/S0140-6736(07)61379-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Guerra S., Stern D.A., Zhou M., Sherrill D.L., Wright A.L., Morgan W.J., Martinez F.D. Combined effects of parental and active smoking on early lung function deficits: A prospective study from birth to age 26 years. Thorax. 2013;68:1021–1028. doi: 10.1136/thoraxjnl-2013-203538. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Tager I.B., Segal M.R., Speizer F.E., Weiss S.T. The natural history of forced expiratory volumes. Effect of cigarette smoking and respiratory symptoms. Am. Rev. Respir. Dis. 1988;138:837–849. doi: 10.1164/ajrccm/138.4.837. [PubMed] [CrossRef] [Google Scholar]

46. Sherrill D.L., Lebowitz M.D., Knudson R.J., Burrows B. Continuous longitudinal regression equations for pulmonary function measures. Eur. Respir. J. 1992;5:452–462. [PubMed] [Google Scholar]

47. Park B., Koo S.M., An J., Lee M., Kang H.Y., Qiao D., Cho M.H., Sung J., Silverman E.K., Yang H.J., et al. Genome-wide assessment of gene-by-smoking interactions in COPD. Sci. Rep. 2018;8:9319. doi: 10.1038/s41598-018-27463-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Molfino N.A. Genetic predisposition to accelerated decline of lung function in COPD. Int. J. Chronic Obstruct. Pulm. Dis. 2007;2:117–119. [PMC free article] [PubMed] [Google Scholar]

49. Leem A.Y., Park B., Kim Y.S., Chang J., Won S., Jung J.Y. Longitudinal decline in lung function: A community-based cohort study in Korea. Sci. Rep. 2019;9:13614. doi: 10.1038/s41598-019-49598-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Perez-Padilla R., Fernandez-Plata R., Montes de Oca M., Lopez-Varela M.V., Jardim J.R., Muino A., Valdivia G., Menezes A.M.B. Lung function decline in subjects with and without COPD in a population-based cohort in Latin-America. PLoS ONE. 2017;12:e0177032. doi: 10.1371/journal.pone.0177032. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Omori H., Nonami Y., Morimoto Y. Effect of smoking on FEV decline in a cross-sectional and longitudinal study of a large cohort of Japanese males. Respirology. 2005;10:464–469. doi: 10.1111/j.1440-1843.2005.00727.x. [PubMed] [CrossRef] [Google Scholar]

52. Dransfield M.T., Davis J.J., Gerald L.B., Bailey W.C. Racial and gender differences in susceptibility to tobacco smoke among patients with chronic obstructive pulmonary disease. Respir. Med. 2006;100:1110–1116. doi: 10.1016/j.rmed.2005.09.019. [PubMed] [CrossRef] [Google Scholar]

53. Terzikhan N., Verhamme K.M., Hofman A., Stricker B.H., Brusselle G.G., Lahousse L. Prevalence and incidence of COPD in smokers and non-smokers: The Rotterdam Study. Eur. J. Epidemiol. 2016;31:785–792. doi: 10.1007/s10654-016-0132-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Jindal S.K. Chronic obstructive pulmonary disease in non-smokers—Is it a different phenotype? Indian J. Med. Res. 2018;147:337–339. doi: 10.4103/ijmr.IJMR_10_18. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Salvi S. Tobacco smoking and environmental risk factors for chronic obstructive pulmonary disease. Clin. Chest Med. 2014;35:17–27. doi: 10.1016/j.ccm.2013.09.011. [PubMed] [CrossRef] [Google Scholar]

56. Liao S.Y., Lin X., Christiani D.C. Occupational exposures and longitudinal lung function decline. Am. J. Ind. Med. 2015;58:14–20. doi: 10.1002/ajim.22389. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Harber P., Tashkin D.P., Simmons M., Crawford L., Hnizdo E., Connett J. Effect of occupational exposures on decline of lung function in early chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2007;176:994–1000. doi: 10.1164/rccm.200605-730OC. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Dransfield M.T., Kunisaki K.M., Strand M.J., Anzueto A., Bhatt S.P., Bowler R.P., Criner G.J., Curtis J.L., Hanania N.A., Nath H., et al. Acute exacerbations and lung function loss in smokers with and without chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2017;195:324–330. [PMC free article] [PubMed] [Google Scholar]

59. Donaldson G.C., Seemungal T.A., Bhowmik A., Wedzicha J.A. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax. 2002;57:847–852. doi: 10.1136/thorax.57.10.847. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Drummond M.B., Hansel N.N., Connett J.E., Scanlon P.D., Tashkin D.P., Wise R.A. Spirometric predictors of lung function decline and mortality in early chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2012;185:1301–1306. doi: 10.1164/rccm.201202-0223OC. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Lee J.Y., Rhee C.K., Jung K.S., Yoo K.H. Strategies for management of the early chronic obstructive lung disease. Tuberc. Respir. Dis. 2016;79:121–126. doi: 10.4046/trd.2016.79.3.121. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Choi H.S., Rhee C.K., Park Y.B., Yoo K.H., Lim S.Y. Metabolic syndrome in early chronic obstructive pulmonary disease: Gender differences and impact on exacerbation and medical costs. Int. J. Chronic Obstruct. Pulm. Dis. 2019;14:2873–2883. doi: 10.2147/COPD.S228497. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Siafakas N., Bizymi N., Mathioudakis A., Corlateanu A. EARLY versus MILD chronic obstructive pulmonary disease (COPD) Respir. Med. 2018;140:127–131. doi: 10.1016/j.rmed.2018.06.007. [PubMed] [CrossRef] [Google Scholar]

64. Varkey A.B. Chronic obstructive pulmonary disease in women: Exploring gender differences. Curr. Opin. Pulm. Med. 2004;10:98–103. doi: 10.1097/00063198-200403000-00003. [PubMed] [CrossRef] [Google Scholar]

65. Lee S.H., Hwang E.D., Lim J.E., Moon S., Kang Y.A., Jung J.Y., Park M.S., Kim S.K., Chang J., Kim Y.S., et al. The risk factors and characteristics of COPD among nonsmokers in Korea: An analysis of KNHANES IV and V. Lung. 2016;194:353–361. doi: 10.1007/s00408-016-9871-6. [PubMed] [CrossRef] [Google Scholar]

66. Vestbo J., Lange P. Can GOLD Stage 0 provide information of prognostic value in chronic obstructive pulmonary disease? Am. J. Respir. Crit. Care Med. 2002;166:329–332. doi: 10.1164/rccm.2112048. [PubMed] [CrossRef] [Google Scholar]

67. McDonough J.E., Yuan R., Suzuki M., Seyednejad N., Elliott W.M., Sanchez P.G., Wright A.C., Gefter W.B., Litzky L., Coxson H.O., et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N. Engl. J. Med. 2011;365:1567–1575. doi: 10.1056/NEJMoa1106955. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Koo H.K., Vasilescu D.M., Booth S., Hsieh A., Katsamenis O.L., Fishbane N., Elliott W.M., Kirby M., Lackie P., Sinclair I., et al. Small airways disease in mild and moderate chronic obstructive pulmonary disease: A cross-sectional study. Lancet Respir. Med. 2018;6:591–602. doi: 10.1016/S2213-2600(18)30196-6. [PubMed] [CrossRef] [Google Scholar]

69. Global Strategy for Prevention, Diagnosis and Managment of Chronic Obstructive Pulmonary Disease. [(accessed on 30 June 2020)];2020 Available online: https://goldcopd.org/gold-reports/

70. Sansores R.H., Velazquez-Uncal M., Perez-Bautista O., Villalba-Caloca J., Falfan-Valencia R., Ramirez-Venegas A. Prevalence of chronic obstructive pulmonary disease in asymptomatic smokers. Int. J. Chronic Obstruct. Pulm. Dis. 2015;10:2357–2363. doi: 10.2147/COPD.S91742. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Kaplan A., Thomas M. Screening for COPD: The gap between logic and evidence. Eur. Respir. Rev. 2017;26 doi: 10.1183/16000617.0113-2016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Cunningham J., Dockery D.W., Speizer F.E. Maternal smoking during pregnancy as a predictor of lung function in children. Am. J. Epidemiol. 1994;139:1139–1152. doi: 10.1093/oxfordjournals.aje.a116961. [PubMed] [CrossRef] [Google Scholar]

73. Hayatbakhsh M.R., Sadasivam S., Mamun A.A., Najman J.M., Williams G.M., O’Callaghan M.J. Maternal smoking during and after pregnancy and lung function in early adulthood: A prospective study. Thorax. 2009;64:810–814. doi: 10.1136/thx.2009.116301. [PubMed] [CrossRef] [Google Scholar]

74. Jaakkola M.S., Jaakkola J.J., Becklake M.R., Ernst P. Passive smoking and evolution of lung function in young adults. An 8-year longitudinal study. J. Clin. Epidemiol. 1995;48:317–327. doi: 10.1016/0895-4356(94)00157-L. [PubMed] [CrossRef] [Google Scholar]

75. Jaakkola M.S., Ernst P., Jaakkola J.J., Becklake M.R. Effect of cigarette smoking on evolution of ventilatory lung function in young adults: An eight year longitudinal study. Thorax. 1991;46:907–913. doi: 10.1136/thx.46.12.907. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Salvi S.S., Barnes P.J. Chronic obstructive pulmonary disease in non-smokers. Lancet. 2009;374:733–743. doi: 10.1016/S0140-6736(09)61303-9. [PubMed] [CrossRef] [Google Scholar]

77. Hayden L.P., Hobbs B.D., Cohen R.T., Wise R.A., Checkley W., Crapo J.D., Hersh C.P., COPDGene Investigators Childhood pneumonia increases risk for chronic obstructive pulmonary disease: The COPDGene study. Respir. Res. 2015;16:115. doi: 10.1186/s12931-015-0273-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Johnston I.D., Strachan D.P., Anderson H.R. Effect of pneumonia and whooping cough in childhood on adult lung function. N. Engl. J. Med. 1998;338:581–587. doi: 10.1056/NEJM199802263380904. [PubMed] [CrossRef] [Google Scholar]

79. Aanerud M., Carsin A.E., Sunyer J., Dratva J., Gislason T., Jarvis D., deMarco R., Raherison C., Wjst M., Dharmage S.C., et al. Interaction between asthma and smoking increases the risk of adult airway obstruction. Eur. Respir. J. 2015;45:635–643. doi: 10.1183/09031936.00055514. [PubMed] [CrossRef] [Google Scholar]

80. De Marco R., Accordini S., Marcon A., Cerveri I., Anto J.M., Gislason T., Heinrich J., Janson C., Jarvis D., Kuenzli N., et al. Risk factors for chronic obstructive pulmonary disease in a European cohort of young adults. Am. J. Respir. Crit. Care Med. 2011;183:891–897. doi: 10.1164/rccm.201007-1125OC. [PubMed] [CrossRef] [Google Scholar]

81. Jo Y.S., Hwang Y.I., Yoo K.H., Kim T.H., Lee M.G., Lee S.H., Shin K.C., In K.H., Yoon H.K., Rhee C.K. Comparing the different diagnostic criteria of Asthma-COPD overlap. Allergy. 2019;74:186–189. doi: 10.1111/all.13577. [PubMed] [CrossRef] [Google Scholar]

82. Nielsen M., Bårnes C.B., Ulrik C.S. Clinical characteristics of the asthma-COPD overlap syndrome—A systematic review. Int. J. Chronic Obstruct. Pulm. Dis. 2015;10:1443–1454. [PMC free article] [PubMed] [Google Scholar]

83. Bai J.W., Mao B., Yang W.L., Liang S., Lu H.W., Xu J.F. Asthma-COPD overlap syndrome showed more exacerbations however lower mortality than COPD. QJM. 2017;110:431–436. doi: 10.1093/qjmed/hcx005. [PubMed] [CrossRef] [Google Scholar]

84. Ramírez-Venegas A., Sansores R.H., Pérez-Padilla R., Regalado J., Velázquez A., Sánchez C., Mayar M.E. Survival of patients with chronic obstructive pulmonary disease due to biomass smoke and tobacco. Am. J. Respir. Crit. Care Med. 2006;173:393–397. doi: 10.1164/rccm.200504-568OC. [PubMed] [CrossRef] [Google Scholar]

85. Camp P.G., Ramirez-Venegas A., Sansores R.H., Alva L.F., McDougall J.E., Sin D.D., Pare P.D., Muller N.L., Silva C.I., Rojas C.E., et al. COPD phenotypes in biomass smoke- versus tobacco smoke-exposed Mexican women. Eur. Respir. J. 2014;43:725–734. doi: 10.1183/09031936.00206112. [PubMed] [CrossRef] [Google Scholar]

86. Moran-Mendoza O., Perez-Padilla J.R., Salazar-Flores M., Vazquez-Alfaro F. Wood smoke-associated lung disease: A clinical, functional, radiological and pathological description. Int. J. Tuberc. Lung Dis. 2008;12:1092–1098. [PubMed] [Google Scholar]

87. Viegi G., Di Pede C. Chronic obstructive lung diseases and occupational exposure. Curr. Opin. Allergy Clin. Immunol. 2002;2:115–121. doi: 10.1097/00130832-200204000-00006. [PubMed] [CrossRef] [Google Scholar]

88. Kan H., Heiss G., Rose K.M., Whitsel E., Lurmann F., London S.J. Traffic exposure and lung function in adults: The Atherosclerosis Risk in Communities study. Thorax. 2007;62:873–879. doi: 10.1136/thx.2006.073015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Schikowski T., Adam M., Marcon A., Cai Y., Vierkötter A., Carsin A.E., Jacquemin B., Al Kanani Z., Beelen R., Birk M., et al. Association of ambient air pollution with the prevalence and incidence of COPD. Eur. Respir. J. 2014;44:614–626. doi: 10.1183/09031936.00132213. [PubMed] [CrossRef] [Google Scholar]

90. To T., Zhu J., Villeneuve P.J., Simatovic J., Feldman L., Gao C., Williams D., Chen H., Weichenthal S., Wall C., et al. Chronic disease prevalence in women and air pollution—A 30-year longitudinal cohort study. Environ. Int. 2015;80:26–32. doi: 10.1016/j.envint.2015.03.017. [PubMed] [CrossRef] [Google Scholar]

91. Gauderman W.J., Avol E., Gilliland F., Vora H., Thomas D., Berhane K., McConnell R., Kuenzli N., Lurmann F., Rappaport E., et al. The effect of air pollution on lung development from 10 to 18 years of age. N. Engl. J. Med. 2004;351:1057–1067. doi: 10.1056/NEJMoa040610. [PubMed] [CrossRef] [Google Scholar]

92. Eisner M.D., Anthonisen N., Coultas D., Kuenzli N., Perez-Padilla R., Postma D., Romieu I., Silverman E.K., Balmes J.R. An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2010;182:693–718. doi: 10.1164/rccm.200811-1757ST. [PubMed] [CrossRef] [Google Scholar]

93. Arshad S.H., Hodgekiss C., Holloway J.W., Kurukulaaratchy R., Karmaus W., Zhang H., Roberts G. Association of asthma and smoking with lung function impairment in adolescence and early adulthood: The Isle of Wight Birth Cohort Study. Eur. Respir. J. 2020;55 doi: 10.1183/13993003.00477-2019. [PubMed] [CrossRef] [Google Scholar]

94. Scichilone N., Battaglia S., La Sala A., Bellia V. Clinical implications of airway hyperresponsiveness in COPD. Int. J. Chronic Obstruct. Pulm. Dis. 2006;1:49–60. [PMC free article] [PubMed] [Google Scholar]

95. Deesomchok A., Webb K.A., Forkert L., Lam Y.M., Ofir D., Jensen D., O’Donnell D.E. Lung hyperinflation and its reversibility in patients with airway obstruction of varying severity. COPD. 2010;7:428–437. doi: 10.3109/15412555.2010.528087. [PubMed] [CrossRef] [Google Scholar]

96. Nagelmann A., Tonnov Ä., Laks T., Sepper R., Prikk K. Lung dysfunction of chronic smokers with no signs of COPD. COPD. 2011;8:189–195. doi: 10.3109/15412555.2011.565090. [PubMed] [CrossRef] [Google Scholar]

97. Chen C., Jian W., Gao Y., Xie Y., Song Y., Zheng J. Early COPD patients with lung hyperinflation associated with poorer lung function but better bronchodilator responsiveness. Int. J. Chronic Obstruct. Pulm. Dis. 2016;11:2519–2526. doi: 10.2147/COPD.S110021. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Soumagne T., Laveneziana P., Veil-Picard M., Guillien A., Claude F., Puyraveau M., Annesi-Maesano I., Roche N., Dalphin J.C., Degano B. Asymptomatic subjects with airway obstruction have significant impairment at exercise. Thorax. 2016;71:804–811. doi: 10.1136/thoraxjnl-2015-207953. [PubMed] [CrossRef] [Google Scholar]

99. Matheson M.C., Raven J., Johns D.P., Abramson M.J., Walters E.H. Associations between reduced diffusing capacity and airflow obstruction in community-based subjects. Respir. Med. 2007;101:1730–1737. doi: 10.1016/j.rmed.2007.02.020. [PubMed] [CrossRef] [Google Scholar]

100. Harvey B.G., Strulovici-Barel Y., Kaner R.J., Sanders A., Vincent T.L., Mezey J.G., Crystal R.G. Risk of COPD with obstruction in active smokers with normal spirometry and reduced diffusion capacity. Eur. Respir. J. 2015;46:1589–1597. doi: 10.1183/13993003.02377-2014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Zaigham S., Wollmer P., Engström G. The association of lung clearance index with COPD and FEV(1) reduction in ‘men born in 1914’ COPD J. Chronic Obstr. Pulm. Dis. 2017;14:324–329. doi: 10.1080/15412555.2017.1314455. [PubMed] [CrossRef] [Google Scholar]

102. Frantz S., Nihlén U., Dencker M., Engström G., Löfdahl C.G., Wollmer P. Impulse oscillometry may be of value in detecting early manifestations of COPD. Respir. Med. 2012;106:1116–1123. doi: 10.1016/j.rmed.2012.04.010. [PubMed] [CrossRef] [Google Scholar]

103. Kolsum U., Borrill Z., Roy K., Starkey C., Vestbo J., Houghton C., Singh D. Impulse oscillometry in COPD: Identification of measurements related to airway obstruction, airway conductance and lung volumes. Respir. Med. 2009;103:136–143. doi: 10.1016/j.rmed.2008.07.014. [PubMed] [CrossRef] [Google Scholar]

104. Gong S.G., Yang W.L., Liu J.M., Liu W.Z., Zheng W. Change in pulmonary function in chronic obstructive pulmonary disease stage 0 patients. Int. J. Clin. Exp. Med. 2015;8:21400–21406. [PMC free article] [PubMed] [Google Scholar]

105. Omori H., Nakashima R., Otsuka N., Mishima Y., Tomiguchi S., Narimatsu A., Nonami Y., Mihara S., Koyama W., Marubayashi T., et al. Emphysema detected by lung cancer screening with low-dose spiral CT: Prevalence, and correlation with smoking habits and pulmonary function in Japanese male subjects. Respirology. 2006;11:205–210. doi: 10.1111/j.1440-1843.2006.00827.x. [PubMed] [CrossRef] [Google Scholar]

106. McAllister D.A., Ahmed F.S., Austin J.H., Henschke C.I., Keller B.M., Lemeshow A., Reeves A.P., Mesia-Vela S., Pearson G.D., Shiau M.C., et al. Emphysema predicts hospitalisation and incident airflow obstruction among older smokers: A prospective cohort study. PLoS ONE. 2014;9:e93221. doi: 10.1371/journal.pone.0093221. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Vestbo J., Edwards L.D., Scanlon P.D., Yates J.C., Agusti A., Bakke P., Calverley P.M., Celli B., Coxson H.O., Crim C., et al. Changes in forced expiratory volume in 1 second over time in COPD. N. Engl. J. Med. 2011;365:1184–1192. doi: 10.1056/NEJMoa1105482. [PubMed] [CrossRef] [Google Scholar]

108. Koo H.K., Jin K.N., Kim D.K., Chung H.S., Lee C.H. Association of incidental emphysema with annual lung function decline and future development of airflow limitation. Int. J. Chronic Obstruct. Pulm. Dis. 2016;11:161–166. doi: 10.2147/COPD.S96809. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Bhatt S.P. Imaging small airway disease: Probabilities and possibilities. Ann. Am. Thorac. Soc. 2019;16:975–977. doi: 10.1513/AnnalsATS.201903-231ED. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Galban C.J., Han M.K., Boes J.L., Chughtai K.A., Meyer C.R., Johnson T.D., Galban S., Rehemtulla A., Kazerooni E.A., Martinez F.J., et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat. Med. 2012;18:1711–1715. doi: 10.1038/nm.2971. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Bhatt S.P., Soler X., Wang X., Murray S., Anzueto A.R., Beaty T.H., Boriek A.M., Casaburi R., Criner G.J., Diaz A.A., et al. Association between functional small airway disease and FEV1 decline in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2016;194:178–184. doi: 10.1164/rccm.201511-2219OC. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Kirby M., Tanabe N., Tan W.C., Zhou G., Obeidat M., Hague C.J., Leipsic J., Bourbeau J., Sin D.D., Hogg J.C., et al. Total airway count on computed tomography and the risk of chronic obstructive pulmonary disease progression. Findings from a population-based study. Am. J. Respir. Crit. Care Med. 2018;197:56–65. doi: 10.1164/rccm.201704-0692OC. [PubMed] [CrossRef] [Google Scholar]

113. Mohamed Hoesein F.A., de Jong P.A., Lammers J.W., Mali W.P., Schmidt M., de Koning H.J., van der Aalst C., Oudkerk M., Vliegenthart R., Groen H.J., et al. Airway wall thickness associated with forced expiratory volume in 1 second decline and development of airflow limitation. Eur. Respir. J. 2015;45:644–651. doi: 10.1183/09031936.00020714. [PubMed] [CrossRef] [Google Scholar]

114. Zeng S., Tham A., Bos B., Jin J., Giang B., Arjomandi M. Lung volume indices predict morbidity in smokers with preserved spirometry. Thorax. 2019;74:114–124. doi: 10.1136/thoraxjnl-2018-211881. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Arjomandi M., Zeng S., Barjaktarevic I., Barr R.G., Bleecker E.R., Bowler R.P., Buhr R.G., Criner G.J., Comellas A.P., Cooper C.B., et al. Radiographic lung volumes predict progression to COPD in smokers with preserved spirometry in SPIROMICS. Eur. Respir. J. 2019;54 doi: 10.1183/13993003.02214-2018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

116. Ruppert K., Qing K., Patrie J.T., Altes T.A., Mugler J.P., 3rd Using hyperpolarized xenon-129 MRI to quantify early-stage lung disease in smokers. Acad Radiol. 2019;26:355–366. doi: 10.1016/j.acra.2018.11.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

117. Polverino F., Hysinger E.B., Gupta N., Willmering M., Olin T., Abman S.H., Woods J.C. Lung MRI as a potential complementary diagnostic tool for early COPD. Am. J. Med. 2020;133:757–760. doi: 10.1016/j.amjmed.2019.12.009. [PubMed] [CrossRef] [Google Scholar]

118. Fan L., Xia Y., Guan Y., Yu H., Zhang T.F., Liu S.Y., Li B. Capability of differentiating smokers with normal pulmonary function from COPD patients: A comparison of CT pulmonary volume analysis and MR perfusion imaging. Eur. Radiol. 2013;23:1234–1241. doi: 10.1007/s00330-012-2729-2. [PubMed] [CrossRef] [Google Scholar]

119. Xia Y., Guan Y., Fan L., Liu S.Y., Yu H., Zhao L.M., Li B. Dynamic contrast enhanced magnetic resonance perfusion imaging in high-risk smokers and smoking-related COPD: Correlations with pulmonary function tests and quantitative computed tomography. COPD J. Chronic Obstr. Pulm. Dis. 2014;11:510–520. doi: 10.3109/15412555.2014.948990. [PubMed] [CrossRef] [Google Scholar]

120. Kim V., Han M.K., Vance G.B., Make B.J., Newell J.D., Hokanson J.E., Hersh C.P., Stinson D., Silverman E.K., Criner G.J. The chronic bronchitic phenotype of COPD: An analysis of the COPDGene Study. Chest. 2011;140:626–633. doi: 10.1378/chest.10-2948. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Meek P.M., Petersen H., Washko G.R., Diaz A.A., Klm V., Sood A., Tesfaigzi Y. Chronic bronchitis is associated with worse symptoms and quality of life than chronic airflow obstruction. Chest. 2015;148:408–416. doi: 10.1378/chest.14-2240. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Kania A., Krenke R., Kuziemski K., Czajkowska-Malinowska M., Celejewska-Wojcik N., Kuznar-Kaminska B., Farnik M., Bokiej J., Miszczuk M., Damps-Konstanska I., et al. Distribution and characteristics of COPD phenotypes results from the Polish sub-cohort of the POPE study. Int. J. Chronic Obstruct. Pulm. Dis. 2018;13:1613–1621. doi: 10.2147/COPD.S154716. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Choi J.Y., Yoon H.K., Park S.J., Park Y.B., Shin K.C., Na J.O., Yoo K.H., Jung K.S., Kim Y.K., Rhee C.K. Chronic bronchitis is an independently associated factor for more symptom and high-risk groups. Int. J. Chronic Obstruct. Pulm. Dis. 2016;11:1335–1341. [PMC free article] [PubMed] [Google Scholar]

124. Ferris B.G. Epidemiology Standardization Project (American Thoracic Society) Am. Rev. Respir. Dis. 1978;118:1–120. [PubMed] [Google Scholar]

125. Choi J.Y., Yoon H.K., Shin K.C., Park S.Y., Lee C.Y., Ra S.W., Jung K.S., Yoo K.H., Lee C.H., Rhee C.K. CAT Score and SGRQ Definitions of chronic bronchitis as an alternative to the classical definition. Int. J. Chronic Obstruct. Pulm. Dis. 2019;14:3043–3052. doi: 10.2147/COPD.S228307. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Kim V., Zhao H., Regan E., Han M.K., Make B.J., Crapo J.D., Jones P.W., Curtis J.L., Silverman E.K., Criner G.J., et al. The St. George’s Respiratory Questionnaire definition of chronic bronchitis may be a better predictor of COPD exacerbations compared with the classic definition. Chest. 2019;156:685–695. doi: 10.1016/j.chest.2019.03.041. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Lim J.U., Lee J.H., Kim T.H., Lee J.S., Lee S.D., Oh Y.M., Rhee C.K. Alternative definitions of chronic bronchitis and their correlation with CT parameters. Int. J. Chronic Obstruct. Pulm. Dis. 2018;13:1893–1899. doi: 10.2147/COPD.S164055. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Kim V., Oros M., Durra H., Kelsen S., Aksoy M., Cornwell W.D., Rogers T.J., Criner G.J. Chronic bronchitis and current smoking are associated with more goblet cells in moderate to severe COPD and smokers without airflow obstruction. PLoS ONE. 2015;10:e0116108. doi: 10.1371/journal.pone.0116108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Holm M., Toren K., Andersson E. Incidence of chronic bronchitis: A prospective study in a large general population. Int. J. Tuberc. Lung Dis. 2014;18:870–875. doi: 10.5588/ijtld.13.0652. [PubMed] [CrossRef] [Google Scholar]

130. Mejza F., Gnatiuc L., Buist A.S., Vollmer W.M., Lamprecht B., Obaseki D.O., Nastalek P., Nizankowska-Mogilnicka E., Burney P.G.J. Prevalence and burden of chronic bronchitis symptoms: Results from the BOLD study. Eur. Respir. J. 2017;50 doi: 10.1183/13993003.00621-2017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. Vestbo J., Prescott E., Lange P. Association of chronic mucus hypersecretion with FEV1 decline and chronic obstructive pulmonary disease morbidity. Copenhagen City Heart Study Group. Am. J. Respir. Crit. Care Med. 1996;153:1530–1535. doi: 10.1164/ajrccm.153.5.8630597. [PubMed] [CrossRef] [Google Scholar]

132. Allinson J.P., Hardy R., Donaldson G.C., Shaheen S.O., Kuh D., Wedzicha J.A. The presence of chronic mucus hypersecretion across adult life in relation to chronic obstructive pulmonary disease development. Am. J. Respir. Crit. Care Med. 2016;193:662–672. doi: 10.1164/rccm.201511-2210OC. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

133. Morice A.H., Celli B., Kesten S., Lystig T., Tashkin D., Decramer M. COPD in young patients: A pre-specified analysis of the four-year trial of tiotropium (UPLIFT) Respir. Med. 2010;104:1659–1667. doi: 10.1016/j.rmed.2010.07.016. [PubMed] [CrossRef] [Google Scholar]

134. Wang Y., Liao J., Zhong Y., Zhang C., Li X., Wang G. Predictive value of combining inflammatory biomarkers and rapid decline of FEV(1) for COPD in Chinese population: A prospective cohort study. Int. J. Chronic Obstruct. Pulm. Dis. 2019;14:2825–2833. doi: 10.2147/COPD.S223869. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Zemans R.L., Jacobson S., Keene J., Kechris K., Miller B.E., Tal-Singer R., Bowler R.P. Multiple biomarkers predict disease severity, progression and mortality in COPD. Respir. Res. 2017;18:117. doi: 10.1186/s12931-017-0597-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. Baralla A., Fois A.G., Sotgiu E., Zinellu E., Mangoni A.A., Sotgia S., Zinellu A., Pirina P., Carru C. Plasma proteomic signatures in early chronic obstructive pulmonary disease. Proteom. Clin. Appl. 2018;12:e1700088. doi: 10.1002/prca.201700088. [PubMed] [CrossRef] [Google Scholar]

137. Rhee C.K., Kim K., Yoon H.K., Kim J.A., Kim S.H., Lee S.H., Park Y.B., Jung K.S., Yoo K.H., Hwang Y.I. Natural course of early COPD. Int. J. Chronic Obstruct. Pulm. Dis. 2017;12:663–668. doi: 10.2147/COPD.S122989. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

138. Colak Y., Afzal S., Nordestgaard B.G., Vestbo J., Lange P. Prevalence, characteristics, and prognosis of early chronic obstructive pulmonary disease. The Copenhagen General Population Study. Am. J. Respir. Crit. Care Med. 2020;201:671–680. doi: 10.1164/rccm.201908-1644OC. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

139. Mapel D.W., Dalal A.A., Blanchette C.M., Petersen H., Ferguson G.T. Severity of COPD at initial spirometry-confirmed diagnosis: Data from medical charts and administrative claims. Int. J. Chronic Obstruct. Pulm. Dis. 2011;6:573–581. [PMC free article] [PubMed] [Google Scholar]

140. Price D., Freeman D., Cleland J., Kaplan A., Cerasoli F. Earlier diagnosis and earlier treatment of COPD in primary care. Prim. Care Respir. J. 2011;20:15–22. doi: 10.4104/pcrj.2010.00060. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

141. Maltais F., Dennis N., Chan C.K. Rationale for earlier treatment in COPD: A systematic review of published literature in mild-to-moderate COPD. COPD J. Chronic Obstruct. Pulm. Dis. 2013;10:79–103. doi: 10.3109/15412555.2012.719048. [PubMed] [CrossRef] [Google Scholar]

143. Anthonisen N.R., Connett J.E., Kiley J.P., Altose M.D., Bailey W.C., Buist A.S., Conway W.A., Jr., Enright P.L., Kanner R.E., O’Hara P., et al. Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV1. The Lung Health Study. JAMA. 1994;272:1497–1505. doi: 10.1001/jama.1994.03520190043033. [PubMed] [CrossRef] [Google Scholar]

144. Scanlon P.D., Connett J.E., Waller L.A., Altose M.D., Bailey W.C., Buist A.S., Tashkin D.P. Smoking cessation and lung function in mild-to-moderate chronic obstructive pulmonary disease. The Lung Health Study. Am. J. Respir. Crit. Care Med. 2000;161:381–390. doi: 10.1164/ajrccm.161.2.9901044. [PubMed] [CrossRef] [Google Scholar]

145. Kanner R.E., Connett J.E., Williams D.E., Buist A.S. Effects of randomized assignment to a smoking cessation intervention and changes in smoking habits on respiratory symptoms in smokers with early chronic obstructive pulmonary disease: The Lung Health Study. Am. J. Med. 1999;106:410–416. doi: 10.1016/S0002-9343(99)00056-X. [PubMed] [CrossRef] [Google Scholar]

146. Anthonisen N.R., Skeans M.A., Wise R.A., Manfreda J., Kanner R.E., Connett J.E. The effects of a smoking cessation intervention on 14.5-year mortality: A randomized clinical trial. Ann. Intern. Med. 2005;142:233–239. doi: 10.7326/0003-4819-142-4-200502150-00005. [PubMed] [CrossRef] [Google Scholar]

147. Chinn S., Jarvis D., Melotti R., Luczynska C., Ackermann-Liebrich U., Antó J.M., Cerveri I., de Marco R., Gislason T., Heinrich J., et al. Smoking cessation, lung function, and weight gain: A follow-up study. Lancet. 2005;365:1629–1635. doi: 10.1016/S0140-6736(05)66511-7. [PubMed] [CrossRef] [Google Scholar]

148. Lee P.N., Fry J.S. Systematic review of the evidence relating FEV1 decline to giving up smoking. BMC Med. 2010;8:84. doi: 10.1186/1741-7015-8-84. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

149. Zhou Y., Zhong N.S., Li X., Chen S., Zheng J., Zhao D., Yao W., Zhi R., Wei L., He B., et al. Tiotropium in early-stage chronic obstructive pulmonary disease. N. Engl. J. Med. 2017;377:923–935. doi: 10.1056/NEJMoa1700228. [PubMed] [CrossRef] [Google Scholar]

150. Gagnon P., Saey D., Provencher S., Milot J., Bourbeau J., Tan W.C., Martel S., Maltais F. Walking exercise response to bronchodilation in mild COPD: A randomized trial. Respir. Med. 2012;106:1695–1705. doi: 10.1016/j.rmed.2012.08.021. [PubMed] [CrossRef] [Google Scholar]

151. Singh D., D’Urzo A.D., Donohue J.F., Kerwin E.M. Weighing the evidence for pharmacological treatment interventions in mild COPD; a narrative perspective. Respir. Res. 2019;20:141. doi: 10.1186/s12931-019-1108-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

152. Dusser D., Bravo M.L., Iacono P. The effect of tiotropium on exacerbations and airflow in patients with COPD. Eur. Respir. J. 2006;27:547–555. doi: 10.1183/09031936.06.00062705. [PubMed] [CrossRef] [Google Scholar]

153. Decramer M., Celli B., Kesten S., Lystig T., Mehra S., Tashkin D.P. Effect of tiotropium on outcomes in patients with moderate chronic obstructive pulmonary disease (UPLIFT): A prespecified subgroup analysis of a randomised controlled trial. Lancet. 2009;374:1171–1178. doi: 10.1016/S0140-6736(09)61298-8. [PubMed] [CrossRef] [Google Scholar]

154. Tashkin D.P., Celli B., Senn S., Burkhart D., Kesten S., Menjoge S., Decramer M. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N. Engl. J. Med. 2008;359:1543–1554. doi: 10.1056/NEJMoa0805800. [PubMed] [CrossRef] [Google Scholar]

155. Troosters T., Celli B., Lystig T., Kesten S., Mehra S., Tashkin D.P., Decramer M. Tiotropium as a first maintenance drug in COPD: Secondary analysis of the UPLIFT trial. Eur. Respir. J. 2010;36:65–73. doi: 10.1183/09031936.00127809. [PubMed] [CrossRef] [Google Scholar]

156. Ray R., Tombs L., Naya I., Compton C., Lipson D.A., Boucot I. Efficacy and safety of the dual bronchodilator combination umeclidinium/vilanterol in COPD by age and airflow limitation severity: A pooled post hoc analysis of seven clinical trials. Pulm. Pharmacol. Ther. 2019;57:101802. doi: 10.1016/j.pupt.2019.101802. [PubMed] [CrossRef] [Google Scholar]

157. Jenkins C.R., Jones P.W., Calverley P.M., Celli B., Anderson J.A., Ferguson G.T., Yates J.C., Willits L.R., Vestbo J. Efficacy of salmeterol/fluticasone propionate by GOLD stage of chronic obstructive pulmonary disease: Analysis from the randomised, placebo-controlled TORCH study. Respir. Res. 2009;10:59. doi: 10.1186/1465-9921-10-59. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

158. Pauwels R.A., Löfdahl C.G., Laitinen L.A., Schouten J.P., Postma D.S., Pride N.B., Ohlsson S.V. Long-term treatment with inhaled budesonide in persons with mild chronic obstructive pulmonary disease who continue smoking. European Respiratory Society Study on Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 1999;340:1948–1953. doi: 10.1056/NEJM199906243402503. [PubMed] [CrossRef] [Google Scholar]

159. Calverley P.M.A., Anderson J.A., Brook R.D., Crim C., Gallot N., Kilbride S., Martinez F.J., Yates J., Newby D.E., Vestbo J., et al. Fluticasone furoate, vilanterol, and lung function decline in patients with moderate chronic obstructive pulmonary disease and heightened cardiovascular risk. Am. J. Respir. Crit. Care Med. 2018;197:47–55. doi: 10.1164/rccm.201610-2086OC. [PubMed] [CrossRef] [Google Scholar]

160. Vestbo J., Sorensen T., Lange P., Brix A., Torre P., Viskum K. Long-term effect of inhaled budesonide in mild and moderate chronic obstructive pulmonary disease: A randomised controlled trial. Lancet. 1999;353:1819–1823. doi: 10.1016/S0140-6736(98)10019-3. [PubMed] [CrossRef] [Google Scholar]

161. Jones P.W., Willits L.R., Burge P.S., Calverley P.M. Disease severity and the effect of fluticasone propionate on chronic obstructive pulmonary disease exacerbations. Eur. Respir. J. 2003;21:68–73. doi: 10.1183/09031936.03.00013303. [PubMed] [CrossRef] [Google Scholar]

162. Van Grunsven P., Schermer T., Akkermans R., Albers M., van den Boom G., van Schayck O., van Herwaarden C., van Weel C. Short- and long-term efficacy of fluticasone propionate in subjects with early signs and symptoms of chronic obstructive pulmonary disease. Results of the DIMCA study. Respir. Med. 2003;97:1303–1312. doi: 10.1016/j.rmed.2003.08.001. [PubMed] [CrossRef] [Google Scholar]

163. Wise R., Connett J., Weinmann G., Scanlon P., Skeans M. Effect of inhaled triamcinolone on the decline in pulmonary function in chronic obstructive pulmonary disease. N. Engl. J. Med. 2000;343:1902–1909. [PubMed] [Google Scholar]

164. Di Lorenzo G., Morici G., Drago A., Pellitteri M.E., Mansueto P., Melluso M., Norrito F., Squassante L., Fasolo A. Efficacy, tolerability, and effects on quality of life of inhaled salmeterol and oral theophylline in patients with mild-to-moderate chronic obstructive pulmonary disease. SLMT02 Italian Study Group. Clin. Ther. 1998;20:1130–1148. doi: 10.1016/S0149-2918(98)80109-4. [PubMed] [CrossRef] [Google Scholar]

165. Hirai D.M., Jones J.H., Zelt J.T., da Silva M.L., Bentley R.F., Edgett B.A., Gurd B.J., Tschakovsky M.E., O’Donnell D.E., Neder J.A. Oral N-acetylcysteine and exercise tolerance in mild chronic obstructive pulmonary disease. J. Appl. Physiol. 2017;122:1351–1361. doi: 10.1152/japplphysiol.00990.2016. [PubMed] [CrossRef] [Google Scholar]

166. Decramer M., Rutten-van Mölken M., Dekhuijzen P.N., Troosters T., van Herwaarden C., Pellegrino R., van Schayck C.P., Olivieri D., Del Donno M., De Backer W., et al. Effects of N-acetylcysteine on outcomes in chronic obstructive pulmonary disease (Bronchitis Randomized on NAC Cost-Utility Study, broncus): A randomised placebo-controlled trial. Lancet. 2005;365:1552–1560. doi: 10.1016/S0140-6736(05)66456-2. [PubMed] [CrossRef] [Google Scholar]

Which of these is a clinical manifestation of early COPD?

What are the early signs of COPD? Chronic obstructive pulmonary disease (COPD) is a severe and progressive lung condition. Early signs of the condition include a chronic cough, increased mucus, and tiredness.

What are the 4 main symptoms of COPD?

Symptoms of COPD include:.
Frequent coughing or wheezing..
Excess phlegm or sputum..
Shortness of breath..
Trouble taking a deep breath..

What are the three common clinical manifestations of a patient with COPD who is experiencing an exacerbation?

The most common signs and symptoms of an oncoming exacerbation are: More coughing, wheezing, or shortness of breath than usual. Changes in the color, thickness, or amount of mucus. Feeling tired for more than one day.

What are 3 physical assessment findings signs that are associated with COPD?

Findings indicating COPD include:.
An expanded chest (barrel chest)..
Wheezing during normal breathing..
Taking longer to exhale fully..
Decreased breath sounds or abnormal breath sounds such as crackles or wheezes..