Giải bài tập hàm số mũ và hàm số logarit năm 2024

Một sản phẩm của công ty TNHH Giáo dục Edmicro

CÔNG TY TNHH GIÁO DỤC EDMICRO MST: 0108115077 Địa chỉ: Tầng 5 Tòa nhà Tây Hà, số 19 Đường Tố Hữu, Phường Trung Văn, Quận Nam Từ Liêm, Thành phố Hà Nội, Việt Nam

Lớp học

  • Lớp 1
  • Lớp 2
  • Lớp 3
  • Lớp 4
  • Lớp 5
  • Lớp 6
  • Lớp 7
  • Lớp 8
  • Lớp 9
  • Lớp 10
  • Lớp 11
  • Lớp 12

Tài khoản

  • Gói cơ bản
  • Tài khoản Ôn Luyện
  • Tài khoản Tranh hạng
  • Chính Sách Bảo Mật
  • Điều khoản sử dụng

Thông tin liên hệ

(+84) 096.960.2660

  • Chính Sách Bảo Mật
  • Điều khoản sử dụng

Follow us

Giải bài tập hàm số mũ và hàm số logarit năm 2024

Tài liệu gồm 234 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tổng hợp lý thuyết và hướng dẫn giải các dạng bài tập chuyên đề hàm số mũ và hàm số lôgarit trong chương trình môn Toán 11.

Giải bài tập hàm số mũ và hàm số logarit năm 2024

Bài 01. PHÉP TÍNH LŨY THỪA.

  1. Lý thuyết. 1. Lũy thừa với số mũ nguyên 3. 2. Căn bậc n 3. 3. Lũy thừa với số mũ hữu tỉ 4. 4. Lũy thừa với số mũ thực 4.
  2. Bài tập. + Dạng 1. Tính giá trị biểu thức 5. + Dạng 2. Rút gọn biểu thức 7. + Dạng 3. So sánh 8. + Dạng 4. Bài toán lãi kép 9.
  3. Luyện tập.

Bài 02. PHÉP TÍNH LOGARIT.

  1. Lý thuyết. 1. Khái niệm logarit 19. 2. Tính logarit bằng máy tính cầm tay 19. 3. Tính chất của phép tính logarit 19. 4. Công thức đổi cơ số 20.
  2. Bài tập. + Dạng 1. Tính giá trị biểu thức 21. + Dạng 2. Biểu diễn logarit 22.
  3. Luyện tập.

Bài 03. HÀM SỐ MŨ – HÀM SỐ LOGARIT.

  1. Lý thuyết. 1. Hàm số mũ 26. 2. Hàm số logarit 27.
  2. Bài tập. + Dạng 1. Tập xác định của hàm số 28. + Dạng 2. Đạo hàm của hàm số 30. + Dạng 3. Sự biến thiên của hàm số 32. + Dạng 4. Đồ thị của hàm số 34.
  3. Luyện tập.

Bài 04. PHƯƠNG TRÌNH MŨ – PHƯƠNG TRÌNH LOGARIT.

  1. Lý thuyết. 1. Phương trình mũ 40. 2. Phương trình logarit 41.
  2. Bài tập. + Dạng 1. Phương trình mũ cơ bản 42. + Dạng 2. Phương trình mũ đưa về cùng cơ số 43. + Dạng 3. Phương trình mũ dùng logarit hóa 44. + Dạng 4. Phương trình mũ đặt ẩn phụ cơ bản 45. + Dạng 5. Phương trình mũ đặt ẩn phụ với phương trình đẳng cấp 47. + Dạng 6. Phương trình mũ đặt ẩn phụ với tích hai cơ số bằng 1 49. + Dạng 7. Phương trình logarit cơ bản 51. + Dạng 8. Phương trình logarit đưa về cùng cơ số 52. + Dạng 9. Phương trình logarit dùng mũ hóa 53. + Dạng 10. Phương trình logarit đặt ẩn phụ 55.
  3. Luyện tập.

Bài 05. BẤT PHƯƠNG TRÌNH MŨ – PHƯƠNG TRÌNH LOGARIT.

  1. Lý thuyết. 1. Bất phương trình mũ 61. 2. Bất phương trình logarit 62.
  2. Bài tập. + Dạng 1. Bất phương trình mũ cơ bản 63. + Dạng 2. Bất phương trình mũ đưa về cùng cơ số 64. + Dạng 3. Bất phương trình mũ dùng logarit hóa 65. + Dạng 4. Bất phương trình mũ đặt ẩn phụ 66. + Dạng 5. Bất phương trình logarit cơ bản 67. + Dạng 6. Bất phương trình logarit đưa về cùng cơ số 68. + Dạng 7. Bất phương trình logarit dùng mũ hóa 69. + Dạng 8. Bất phương trình logarit đặt ẩn phụ 71.
  3. Luyện tập.
  • Hàm Số Mũ Và Hàm Số Lôgarit

Ghi chú: Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về: Facebook: TOÁN MATH Email: [email protected]

trong đó N(t) tính bằng đơn vị triệu người, t tính bằng đơn vị năm và t = 0 ứng với đầu năm 1985. Theo công thức trên, có bao nhiêu số người trên thế giới bị nhiễm HIV ở thời điểm đầu năm 2005?

Lời giải:

Ta có 2005 – 1985 = 20 (năm). Vậy đầu năm 2005 ứng với t = 20. Số cần tìm

Bài 7: Biết rằng năm 2003 dân số Việt Nam là 80 902 000 người và tỉ lệ tăng dân số là 1,47%. Hỏi nếu vẫn giữ nguyên tỉ lệ tăng dân số hàng năm đó thì năm 2020 dân số Việt Nam sẽ là bao nhiêu (làm tròn kết quả đến hàng nghìn)?

Lời giải:

Công thức tính dân số theo dữ kiện đã cho là: N(t) = 80902000.e0,0147t ở đó thời gian t tính bằng năm và t = 0 ứng với đầu năm 2003.

Ta có 2020 – 2003 = 17.

Vậy năm 2020 ứng với t = 17

Dân số năm 2020 tính theo dữ kiện đã cho : N(17) = 80902000.e17.0,0147t ≈ 103870000 người.

Bài 8: Nồng độ c của một chất hóa học sau thời gian t xảy ra phản ứng tự xúc tác được xác định bằng công thức

Hãy chọn phát biểu đúng :

  1. Nồng độ c ngày càng giảm
  1. Nồng độ c ngày càng tăng
  1. Trong khoảng thời gian đầu nồng độ c tăng, sau đó giảm dần
  1. Trong khoảng thời gian đầu nồng độ c giảm, sau đó tăng dần

Lời giải:

với mọi t ≥ 0 nên c(t) tăng trên [0; +∞] , nghĩa là nồng độ c ngày càng tăng.

Bài 9: Cho các hàm số:

(I) y = (0,3)-x (II) y = (1,3)-2x

Trong các hàm số đã cho, hàm số nào đồng biến trên R ?

Lời giải:

Hàm số đồng biến khi a > 1.

Viết lại các hàm số về dạng hàm số mũ y = ax :

Trong bốn cơ số ta thấy chỉ có hai cơ số lớn hơn 1 là

Do đó chỉ có hai hàm số (I) và (IV) là đồng biến trên R

Bài 10: Tìm các khoảng đồng biến của hàm số y = 4x - 5ln(x2 + 1)

Lời giải:

Tập xác định : R

Bảng xét dấu

Khoảng đồng biến của hàm số là (-∞; 12) và (2; +∞)

Bài 11: Cho hàm số y = x2e-x . Khẳng định nào sau đây là đúng ?

  1. Hàm số có x = 0 là điểm cực đại, x = 2 là điểm cực tiểu
  1. Hàm số có x = 0 là điểm cực tiểu, x = -2 là điểm cực đại
  1. Hàm số có x = 0 là điểm cực đại, x = -2 là điểm cực tiểu
  1. Hàm số có x = 0 là điểm cực tiểu, x = 2 là điểm cực đại

Lời giải:

y' = e-xx(2 - x). Bảng biến thiên

Từ bảng biến thiên ta thấy x = 0 là điểm cực tiểu, x = 2 là điểm cực đại của hàm số.

Bài 12: Tìm các đường tiệm cận ngang của đồ thị hàm số

Lời giải:

Từ đó suy ra hàm số có hai tiệm cận ngang là y = 32 và y = 0

Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang là: y = 32; y = 0

Bài 13: Một quần thể vi khuẩn lúc đầu có 200 cá thể và cứ sau một ngày thì số lượng cá thể tăng lên gấp ba lần. Tìm công thức biểu thị số lượng cá thể (kí hiệu N) của quần thể này sau t ngày kể từ lúc ban đầu.

Lời giải:

Theo giả thiết, số lượng vi khuẩn sau 1, 2, 3,… ngày là 200.3 ; 200 .3.3 ; 200.3.3.3 ;… Từ đó ta thấy công thức đúng là N(t) = 200.3t