Các bài toán nâng cao về phân số lớp 6 năm 2024

  • Các bài toán nâng cao về phân số lớp 6 năm 2024
  • * Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
    • Thi chuyển cấp
    • Các bài toán nâng cao về phân số lớp 6 năm 2024
      • Mầm non

        • Tranh tô màu
        • Trường mầm non
        • Tiền tiểu học
        • Danh mục Trường Tiểu học
        • Dạy con học ở nhà
        • Giáo án Mầm non
        • Sáng kiến kinh nghiệm
      • Học tập

        • Giáo án - Bài giảng
        • Luyện thi
        • Văn bản - Biểu mẫu
        • Viết thư UPU
        • An toàn giao thông
        • Dành cho Giáo Viên
        • Hỏi đáp học tập
        • Cao học - Sau Cao học
        • Trung cấp - Học nghề
        • Cao đẳng - Đại học
      • Hỏi bài

        • Toán học
        • Văn học
        • Tiếng Anh
        • Vật Lý
        • Hóa học
        • Sinh học
        • Lịch Sử
        • Địa Lý
        • GDCD
        • Tin học
      • Trắc nghiệm

        • Trắc nghiệm IQ
        • Trắc nghiệm EQ
        • KPOP Quiz
        • Đố vui
        • Trạng Nguyên Toàn Tài
        • Trạng Nguyên Tiếng Việt
        • Thi Violympic
        • Thi IOE Tiếng Anh
        • Kiểm tra trình độ tiếng Anh
        • Kiểm tra Ngữ pháp tiếng Anh
      • Tiếng Anh

        • Luyện kỹ năng
        • Giáo án điện tử
        • Ngữ pháp tiếng Anh
        • Màu sắc trong tiếng Anh
        • Tiếng Anh khung châu Âu
        • Tiếng Anh phổ thông
        • Tiếng Anh thương mại
        • Luyện thi IELTS
        • Luyện thi TOEFL
        • Luyện thi TOEIC
      • Khóa học trực tuyến

        • Tiếng Anh cơ bản 1
        • Tiếng Anh cơ bản 2
        • Tiếng Anh trung cấp
        • Tiếng Anh cao cấp
        • Toán mầm non
        • Toán song ngữ lớp 1
        • Toán Nâng cao lớp 1
        • Toán Nâng cao lớp 2
        • Toán Nâng cao lớp 3
        • Toán Nâng cao lớp 4

Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Dạng tổng quát: \(\dfrac{k}{{\left( {n - k} \right).n}} = \dfrac{{n - \left( {n - k} \right)}}{{\left( {n - k} \right).n}} = \dfrac{n}{{\left( {n - k} \right).n}} - \dfrac{{n - k}}{{\left( {n - k} \right).n}} = \dfrac{1}{{n - k}} - \dfrac{1}{n}\)

Áp dụng phương pháp khử liên tiếp: Viết mỗi số hạng thành hiệu của hai số sao cho số trừ ở nhóm trước bằng số bị trừ ở nhóm sau.

Bài tập

Bài 1:

Tính:

  1. A = \(2017:\left( {\dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + ... + \dfrac{1}{{2017.2018}}} \right)\)
  1. \(B = \dfrac{3}{{2.5}} + \dfrac{3}{{5.8}} + \dfrac{3}{{8.11}} + \ldots + \dfrac{3}{{2016.2019}}\)
  1. \(C = \dfrac{2}{{1.7}} + \dfrac{2}{{7.13}} + \dfrac{2}{{13.19}} + \ldots + \dfrac{2}{{2013.2019}}\)
  1. \(D = \dfrac{7}{{1.9}} + \dfrac{7}{{9.17}} + \dfrac{7}{{17.25}} + \ldots + \dfrac{7}{{2011.2019}}\)
  1. \(E = \dfrac{{{3^2}}}{{1.4}} + \dfrac{{{3^2}}}{{4.7}} + \dfrac{{{3^2}}}{{7.10}} + \ldots + \dfrac{{{3^2}}}{{2017.2020}}\)
  1. \(F = \dfrac{1}{{1.2.3}} + \dfrac{1}{{2.3.4}} + \dfrac{1}{{3.4.5}} + \ldots + \dfrac{1}{{18.19.20}}\)

Bài 2:

Tính các tổng sau:

  1. \(A = \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \dfrac{1}{{{2^4}}} + \ldots + \dfrac{1}{{{2^{2020}}}}\)
  1. \(B = 1 + \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{{16}} + \dfrac{1}{{32}} + \ldots + \dfrac{1}{{2048}}\)

Bài 3:

  1. Tính tổng sau: \(A = \dfrac{{1 + \left( {1 + 2} \right) + \left( {1 + 2 + 3} \right) + \ldots + \left( {1 + 2 + 3 + \ldots + 2020} \right)}}{{1.2020 + 2.2019 + 3.2018 + \ldots + 2020.1}}\)
  1. Chứng minh rằng biểu thức \(B\) có giá trị bằng \(\dfrac{1}{2}\) với \(B = \dfrac{{1.2020 + 2.2019 + 3.2018 + \ldots + 2020.1}}{{1.2 + 2.3 + 3.4 + \ldots + 2020.2021}}.\)

Hướng dẫn giải chi tiết

Bài 1:

Tính:

  1. A = \(2017:\left( {\dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + ... + \dfrac{1}{{2017.2018}}} \right)\)
  1. b) \(B = \dfrac{3}{{2.5}} + \dfrac{3}{{5.8}} + \dfrac{3}{{8.11}} + \ldots + \dfrac{3}{{2016.2019}}\)
  1. \(C = \dfrac{2}{{1.7}} + \dfrac{2}{{7.13}} + \dfrac{2}{{13.19}} + \ldots + \dfrac{2}{{2013.2019}}\)
  1. \(D = \dfrac{7}{{1.9}} + \dfrac{7}{{9.17}} + \dfrac{7}{{17.25}} + \ldots + \dfrac{7}{{2011.2019}}\)
  1. \(E = \dfrac{{{3^2}}}{{1.4}} + \dfrac{{{3^2}}}{{4.7}} + \dfrac{{{3^2}}}{{7.10}} + \ldots + \dfrac{{{3^2}}}{{2017.2020}}\)
  1. \(F = \dfrac{1}{{1.2.3}} + \dfrac{1}{{2.3.4}} + \dfrac{1}{{3.4.5}} + \ldots + \dfrac{1}{{18.19.20}}\)

Phương pháp

Nhận xét: Tử số bằng hiệu của các thừa số ở mẫu.

Dạng tổng quát: \(\dfrac{k}{{\left( {n - k} \right).n}} = \dfrac{{n - \left( {n - k} \right)}}{{\left( {n - k} \right).n}} = \dfrac{n}{{\left( {n - k} \right).n}} - \dfrac{{n - k}}{{\left( {n - k} \right).n}} = \dfrac{1}{{n - k}} - \dfrac{1}{n}\)

Áp dụng phương pháp khử liên tiếp: Viết mỗi số hạng thành hiệu của hai số sao cho số trừ ở nhóm trước bằng số bị trừ ở nhóm sau.

Lời giải

\(2017:\left( {\dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + ... + \dfrac{1}{{2017.2018}}} \right)\)

\(\begin{array}{*{20}{l}}{ = 2017:\left( {1 - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + ... + \dfrac{1}{{2017}} - \dfrac{1}{{2018}}} \right)}\\{ = 2017:\left( {1 - \dfrac{1}{{2018}}} \right)}\\{ = 2017:\dfrac{{2017}}{{2018}}}\\{ = 2017.\dfrac{{2018}}{{2017}} = 2018.}\end{array}\)

Vậy \(x = \dfrac{{ - 2}}{3}\)

  1. \(B = \dfrac{3}{{2.5}} + \dfrac{3}{{5.8}} + \dfrac{3}{{8.11}} + \ldots + \dfrac{3}{{2016.2019}}\)

\(\begin{array}{l} = \dfrac{{5 - 2}}{{2.5}} + \dfrac{{8 - 5}}{{5.8}} + \dfrac{{11 - 8}}{{8.11}} + \ldots + \dfrac{{2019 - 2016}}{{2016.2019}}\\\, = \dfrac{5}{{2.5}} - \dfrac{2}{{2.5}} + \dfrac{8}{{5.8}} - \dfrac{5}{{5.8}} + \dfrac{{11}}{{8.11}} - \dfrac{8}{{8.11}} + \ldots + \dfrac{{2019}}{{2016.2019}} - \dfrac{{2016}}{{2016.2019}}\\\, = \dfrac{1}{2} - \dfrac{1}{5} + \dfrac{1}{5} - \dfrac{1}{8} + \dfrac{1}{8} - \dfrac{1}{{11}} + \ldots + \dfrac{1}{{2016}} - \dfrac{1}{{2019}}\\\, = \dfrac{1}{2} - \dfrac{1}{{2019}}\\\, = \dfrac{{2019 - 2}}{{2.2019}}\\\, = \dfrac{{2017}}{{4038}}.\end{array}\)

  1. \(C = \dfrac{2}{{1.7}} + \dfrac{2}{{7.13}} + \dfrac{2}{{13.19}} + \ldots + \dfrac{2}{{2013.2019}}\)

Xét từng phân số ta thấy: Hiệu 2 thừa số ở mẫu bằng \(6\) \( \Rightarrow \) Nhân cả 2 vế của biểu thức với \(3\).

\(\begin{array}{l} \Rightarrow B = \dfrac{{1.2020 + 2.2019 + 3.2018 + \ldots + 2020.1}}{{1.2 + 2.3 + 3.4 + \ldots + 2020.2021}}\\\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{\dfrac{1}{2} \cdot \left( {1.2 + 2.3 + 3.4 + \ldots + 2020.2021} \right)}}{{1.2 + 2.3 + 3.4 + \ldots + 2020.2021}} = \dfrac{1}{2}.\end{array}\)